Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2020

Experimental Determination of the Conditions Associated With “Zebra Stripe” Pattern Generation in the Earth s Inner Radiation Belt and Slot Region

The “zebra stripes” are peaks and valleys commonly present in the spectrograms of energetic particles trapped in the Earth s inner belt and slot region. Several theories have been proposed over the years to explain their generation, structure, and evolution. Yet, the plausibility of various theories has not been tested due to a historical lack of ground truth, including in situ electric field measurements. In this work, we leverage the new visibility offered by the database of Van Allen Probes electric drift measurements to reveal the conditions associated with the generation of zebra stripe patterns. Energetic electron fluxes by the Radiation Belt Storm Probes Ion Composition Experiment between 1 January 2013 and 31 December 2015 are systematically analyzed to determine 370 start times associated with the generation of zebra stripes. Statistical analyses of these events reveal that the zebra stripes are usually created during substorm onset, a time at which prompt penetration electric fields are present in the plasmasphere. All the pieces of experimental evidence collected are consistent with a scenario in which the prompt penetration electric field associated with substorm onset leads to a sudden perturbation of the trapped particle drift motion. Subsequent drift echoes constitute the zebra stripes. This study exemplifies how the analysis of trapped particle dynamics in the inner belt and slot region provides complementary information on the dynamics of plasmaspheric electric fields. It is the first time that the signature of prompt penetration electric fields is detected in near-equatorial electric field measurements below L = 3.

Lejosne, Solène; Mozer, Forrest;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027889

zebra stripes; superposed epoch analysis; prompt penetration electric fields; Inner radiation belt; substorm; Van Allen Probes

2016

Structure and Evolution of Electron "Zebra Stripes" in the Inner Radiation Belt

Zebra stripes\textquotedblright are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that the zebra stripes can be transformed into evenly spaced patterns in the electron drift frequency coordinate: the detrended logarithmic fluxes in each L shell region can be well described by sinusoidal functions of drift frequency. The \textquotedblleftwave number\textquotedblright of this sinusoidal function, which corresponds to the reciprocal of the gap between two adjacent peaks in the drift frequency coordinate, increases in proportion to real time. Further, these structural and evolutionary characteristics of zebra stripes can be reproduced by an analytic model of the evolution of the particle distribution under a single monochromatic or static azimuthal electric field. It is shown that the essential ingredient for the formation of multiple zebra stripes is the periodic drift of particles. The amplitude of the zebra stripes shows a good positive correlation with Kp index, which indicates that the generation mechanism of zebra stripes should be related to geomagnetic activities

Liu, Y.; Zong, Q.-G.; Zhou, X.-Z.; Foster, J.; Rankin, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2015JA022077

electric field; energetic electrons; particle dynamic; Radiation belt; Van Allen Probes; zebra stripes

The \textquotedblleftzebra stripes\textquotedblright: An effect of F-region zonal plasma drifts on the longitudinal distribution of radiation belt particles

We examine a characteristic effect, namely, the ubiquitous appearance of structured peaks and valleys called zebra stripes in the spectrograms of energetic electrons and ions trapped in the inner belt below L ~ 3. We propose an explanation of this phenomenon as a purely kinematic consequence of particle drift velocity modulation caused by F region zonal plasma drifts in the ionosphere. In other words, we amend the traditional assumption that the electric field associated with ionospheric plasma drives trapped particle distributions into rigid corotation with the Earth. An equation based on a simple first-order model is set up to determine quantitatively the appearance of zebra stripes as a function of magnetic time. Our numerical predictions are in agreement with measurements by the Radiation Belt Storm Probes Ion Composition Experiment detector onboard Van Allen Probes, namely: (1) the central energy of any peak identified in the spectrum on the dayside is the central energy of a spectral valley on the night side, and vice versa; (2) there is also an approximate peak-to-valley inversion when comparing the spectrum of trapped electrons with that of trapped ions in the same place; and (3) the actual energy separation between two consecutive peaks (or number of stripes) in the spectrogram of a trapped population is an indicator of the time spent by the particles drifting under quiet conditions.

Lejosne, Solène; Roederer, Juan;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2016

YEAR: 2016     DOI: 10.1002/2015JA021925

electric field; Ionosphere; Inner radiation belt; Van Allen Probes; zebra stripes



  1